
Chiral symmetry and phase transitions in QCD

1. Flavor and chiral symmetries

2. Two flavors: second order transitions

3. Three flavors: cubic terms rule the roost

4. Tetraquarks and the chiral transition

    a. two flavors: meh, so what

    b. three flavors: cannot be ignored: two chiral transitions?



Flavor symmetries

Consider a single, massive quark in QCD:

In QCD, gluons generate the dynamics.  But for this talk, we can ignore them, and 
with certain simple assumptions, concentrate on global symmetries (ind. of xμ).
If there are Nf flavors of quarks, 

There is a symmetry of rotating quarks into one another,

The 2nd condition leaves the mass term invariant, so this is a symmetry of
U(Nf): unitary Nf x Nf matrices.  For QCD, the relevant quarks are up,
down, and strange, so Nf = 2 or 3.

By group theory, U(Nf)= SU(Nf) x U(1): the U(1) is quark number,
                            for SU(Nf), det(U) = 1.

L = q 6Dq +mqq +
1

4
G2

µ⌫ , 6D = �µ(@µ � igAµ)

Lqk =

NfX

i=1

qi 6Dqi +mqiqi

qi ! Uijqj , U
†U = 1

qi ! ei✓V qi



Chiral symmetry
Dirac matrices anticommute, γ0γ1 -= - γ1γ0 …  
In 4-dim.’s, γ5 = γ0γ1γ2γ3 anti-commutes with any γ ( (γ5)2 = + 1)
Introduce chiral projectors, PL and PR,

PL,R =
1

2
(1± �5) , P 2

L = PL , P 2
R = PR , PLPR = PRPL = 0.

Because of Lorentz symmetry, 

Introduce chiral fields, 

The gauge term is chirally symmetric,

while the mass term is not

qL = PL , qL = q PR

q = q†�0 , qL,R = qPR,L

q 6Dq = q 6D(PL + PR)q = qPR 6DPL + qPL 6DPRq = qL 6DqL + qR 6DqR

qq = q(PL + PR)q = qRqL + qLqR



Chiral symmetry…

Now let there be Nf flavors.  If massless, we have a larger symmetry:

Two phases: L & R rotate the same, ~ θV ; or opposite ~ θA:

Thus the full chiral symmetry includes U(1) x UA(1).  
U(1) is quark number, ignore at T = 0, μ = 0 (μ = quark chemical potential)

If m = 0, start with full SUL(Nf) x SUR (Nf) x U(1) x UA(1) symmetry.
If nonzero m generated dynamically, spontaneously broken to SUV(Nf) x U(1).

However, because of the axial anomaly, UA(1) is broken dynamically, 

Not obvious.  g = QCD coupling.  Quantum fluctuations: instantons, dyons…
contribute to the “breaking” of UA(1).

SU(Nf )L ⇥ SU(Nf )R : qL = ULqL , qR = URqR

qL,R ! e±i✓AqL,R

@µJ
µ
5 = @µ (q�5�µq) =

3g2

16⇡2
trGµ⌫

eGµ⌫



Two flavors, simplest

Start with simplest, two flavors.  Take Pauli matrices in flavor ta, a = 1, 2, 3:

The φ0 ~ “sigma”, φa are pions.  (why just these…?).  Let 
Swindle to deal with SU(2) x SU(2) ~ O(4)

~� = (�0,�a)

Expand about h�0i = �0 , h�ai = 0 @V
@�

= 0 =) �0 = 0 or

m2

�

Expanding to quadratic order, m2
� = 2µ2 , m2

⇡ = 0

Massless pions!  If we add a term ~ h σ, then
m2

� = 2µ2 +O(h) , m2
⇡ ⇠ h

So background field h ~ “bare” quark mass, gives pions a mass

V(~�) = �m2

2
~� 2 +

�

4
(~� 2)2

�0 ⇠ qq , �a ⇠ qta�5q



Chiral phase transition, massless pions
Model variation in T = temperature:
m2 goes from negative to positive values:

T = 0: m2 < 0, ⟨φ⟩ ≠ 0     

T ≫ σ0: m2 > 0, ⟨φ⟩ = 0   

T= Tχ: m2 = 0, ⟨φ⟩ = 0 ⇓

Chiral transition second order, m2 = 0 at Tχ.
Universality class O(4) 

V(~�) = �m2

2
~� 2 +

�

4
(~� 2)2



Chiral phase transition, massive pions

Only change is that the potential includes a linear term,

V(~�) = �m2

2
~� 2 +

�

4
(~� 2)2�h�0

Even when m2 vanishes, 
the potential is not flat.

With a linear term, one can never flatten
the potential for any value of the mass
and coupling.

⟨φ⟩ ≠ 0 at any temperature: ⟨φ⟩ is large at T = 0, and ⟨φ⟩ ~ 1/T2 at high T (hm…)

Chiral transition is crossover: ⟨φ⟩ varies smoothly from large to small value.
Also, no large change in entropy, etc.



Two flavors, complete

Now take φa to be a complex valued field:

φ0: isosinglet σ (mσ ~ 500 ΜeV ?) and η (m ~ 550); 
φa: isotriplet of π’s (m ~ 140) and a0’s (m ~ 980).

Terms invariant under O(8):
V(~�) = �m2

2
~� ⇤ · ~�+

�

4
(~� ⇤ · ~�)2

There are also terms invariant just under O(4).  Simplest is a mass term,

��2 (~�⇤)2~� 2Invariant under O(4) x O(2): 

VA(~�) = �m2
A

⇣
(~�⇤)2 + ~� 2

⌘

Plus other quartic terms invariant just under O(4).

�0 ⇠ qq , iq�5q , �a ⇠ qta�5q , iqtaq



Anomaly for two flavors

Simple understanding of the anomaly.  Explictly, φ= (σ + iη, πa + i a0a ):

VA = m2
A(��2 + ⌘2 � ~⇡2 + ~a20)

Anomaly necessary to break the UA(1) symmetry, and ensure a heavy η.

One can add a term ~ h σ and compute masses.  A bit involved, one finds

m2
⌘ �m2

⇡ = m2
a0

�m2
�

Moral: the anomaly pushes the η mass up, and the σ mass down.

Phase transition: if anomaly large at Tχ, the η and a0 decouple, don’t really matter.

If anomaly small at Tχ, might change the nature of the chiral transition.
Unlikely, the anomaly has to become very small.



Chiral symmetry, more carefully

Lqk = q 6D q = qL 6D qL + qR 6D qR , qL,R =
1± �5

2
q

For 3 flavors of massless quarks coupled to a gauge field,

qL ! e�i↵/2 UL qL , qR ! e+i↵/2 UR qR

Classically, global flavor symmetry of SU(3)L x SU(3)R x U(1)A,

Simplest order parameter for χ symmetry breaking (χSB’g):
                                                a,b… = flavor.  A,B… = color

Quantum mechanically, axial U(1)A is broken by instantons +…. to Z(3)A  at T=0
’t Hooft instanton vertex is invariant under Z(3)A:

As T → ∞, U(1)A approximately restored as ~ 1/T7 →9.

�ab = q bA
L qaAR

� ! e+i↵ UR � U†
L

det� ! e3i↵ det�



Sigma models for χ symmetry
Need to classify the possible terms by symmetry
Generally, Φ transforms under Gcl= SU(3)L x SU(3)R x U(1)A 
Best to consider a special case:

Φ is a complex 3x3 matrix, so φ1, φ2, & φ3 are complex as well.
Simplest terms are constructed from powers of:

� =

0

@
�1 0 0
0 �2 0
0 0 �3

1

A

These are invariant under O(6).  For the the full Φ, this becomes O(18):

tr�†� = |�1|2 + |�2|2 + |�3|2

VO(18) = m2 tr�†�+ �O(18)

�
tr�†�

�2

� ! e+i✓A UR �U†
L

(tr�†�)2 = (|�1|2)2 + 2|�1|2|�2|2 + (|�2|2)2 + . . .



And more terms

There is one other quartic term

No cross terms, so clearly independent from the other quartic term, ~ O(18).

One last term needed:

Invariant under SU(3)L x SU(3)R: 

But not under U(1)A!  However, if we choose 

Then this term is invariant under Z(3)A , as det Φ -> (e2πi/3)3 det Φ = det Φ .
This represents the axial anomaly: ’t Hooft

VA = (det�+ det�†) = (�1�2�3 + �⇤
1�

⇤
2�

⇤
3)

det� ! det(UR �U †
L) = det�

tr
�
�†�

�2
= (|�1|2)2 + (|�2|2)2 + (|�3|2)2

� ! e2⇡i/3�



All the fields

Φ complex 3x3 matrix, so 18 degrees of freedom.

Half are JP = 0− : one singlet,  η’ , and 8 fields: 3 π’s, 4 K’s, and a η

Half are JP = 0+: one singlet, σ0 and 8 fields: 3 a0’s, 4 κ’s, and a σ8 

Take simplest case: explicit SU(3) symmetry, no background field, m2 < 0:

Veff = m2 tr�†��(det�+ c.c.) + � tr
�
�†�

�2
+ �O(18)

�
tr�†�

�2

h�i = �0

0

@
1 0 0
0 1 0
0 0 1

1

A

Spontaneous breaking of symmetry => 8 Goldstone Bosons (GB),

mπ = mK = mη = 0.  Axial anomaly splits the would be 9th GB, mη’ 2~ κ φ0 ≠ 0

All JP = 0+ fields are massive



Symmetry broken, but still SU(3) symmetric.  So only four masses, all nonzero:

mass of π = K = η  ≠  mass η’.  mass of a0 = κ = σ8  ≠ singlet σ0.

But the masses satisfy a simple relation (like two flavors, ’t Hooft ’86)

m2
⌘0 �m2

⇡ = m2
a0

�m2
�

The anomaly moves η’ up from the π, but also moves singlet σ down from the a0!

With massive pions

Veff ! Veff � trH�

Now add a term to make the GB’s massive:

Let H be SU(3) symmetric, 

H = h

0

@
1 0 0
0 1 0
0 0 1

1

A



Chiral transition, three flavors
Cubic terms 
very important

At T = 0: m2 < 0, ⟨φ⟩ ≠ 0 , 
looks like κ = 0: =>

<= Would be critical point, m2 = 0:
because of the cubic term,
cannot flatten the potential 

Veff (�0) = 3m2 �2
0 � 2�2

0 + 3(� + 3�O(18))�
4
0



First order transition

Transition occurs for m2 > 0:
barrier between the two vacua,
so first order transition at Tχ. =>

κ is Z(3)A invariant, not U(1)A inv.
So κ must vanish as T → ∞.
Is it big or small at Tχ?

At high temperature, again
large, positive m2 dominates all, 
⟨φ⟩ = 0 



QCD and 2+1 flavors

In QCD, mup ~ 5 MeV, mdown ~ 10 MeV, mstrange ~ 100 MeV.

Because of confinement, and the axial anomaly, can take mud = (mu + md)/2

Vh = � trH(�+ �†) H = h

0

@
mud 0 0
0 mud 0
0 0 ms

1

A

mπ ~ 140, mK  ~ 495 , mη ~ 540 , mη’ ~ 960 . κ ~ 4500. MeV

Can show mπ2 ~ mud, mK2 ~ ms, so mud/ms ~ 1/27. 

h�i =

0

@
�ud 0 0
0 �ud 0
0 0 �s

1

A

<φud > = fπ /2 ~ 46 ,  <φs > = fK /2 ~ 56.

Discuss other masses later.  

Find λ ~ 50 >>  λO(18) ~ 1 .



Background field: big or small?

Schematically, the potential with both a background field, and a cubic term:

V = �h�+m2 �2 � �3 + ��4

For large h, smooth crossover.   
Look for peak in chiral susceptibility:

For small h, true first order transition.



For QCD, small h!

Cubic term drives the transition first order. 

For small enough masses, must be 1st order 

But very sensitive to mud/ms : “Columbia” phase diagram

hdet�i = �2
ud �s

X = QCD

Lattice:
Tχ ~ 154 ± 10 MeV

Crossover.

No 1st order transition until
at least mπ ~ 50 MeV

Bazavov et al, 1701.04325



Critical endpoint?

Lattice result for nonzero T, μ = 0.  
Quark loops generate a negative quartic term, stabilized by a positive sextic term.
This can drive the chiral transition first order.

V = �h�+m2 �2 � �3 + (���qk)�
4+�6 �

6

Possible to have crossover turn first 
order at a Critical EndPoint
Rajagopal, Shuryak, & Stephanov ’99, ‘00



Swept under the rug…

For 2nd order transitions, can classify transitions according to their 
universality class: depends only upon spatial dimension (=3) & symmetry 

For two flavors, assumed quartic coupling positive, so 2nd order transition, O(4)

If anomaly small by Tχ, the symmetry goes from O(4) -> O(4) x O(2)

In 4 - ε dimensions, O(4) x O(2) “fluctuation induced” : flows to negative λ 

Recently: conformal solutions indicate may be new fixed point for O(4) x O(2):
Nakayama & Ohtsuki, 1404.0489, 1407.6195

Have no good models for the relation between anomaly and Tχ:
Fejos, 1506.07399; Heller & Mitter, 1512.05241; Fejos & Hosaka, 1604.05982

lattice suggests anomaly nonzero at Tχ 



Diquarks and tetraquarks for two flavors

Jaffe ’79: most attractive channel for 
quark-quark scattering is antisym. in both flavor and color.

Color: 3 x 3 = 3 (antisym) + 6 (sym)

Two flavors: 2 x 2 = 1 (antisym) + 3 (sym)

For two flavors diquark is a color triplet, flavor singlet,

�A
L = ✏ABC ✏ab (qaBL )T C�1 qbCL

(A, B, C = color; a, b = flavor) Also χR.  χL and  χR singlets under Z(2)A.  

One complex valued tetraquark field:
⇣ = (�A

R)
⇤ �A

L



Sigma models and tetraquarks for two flavors

The tetraquark field ζ is a singlet under flavor and Z(2)A.  

Split complex ζ into its real and imaginary parts, ζr and ζi.  

QCD is even under parity, so only even powers of ζi can appears, forget ζi.

But any powers of ζr can! 

VA
⇣r = hr ⇣r +m2

r ⇣
2
r + r ⇣

3
r + �r ⇣

4
r

Hence ⟨ζr ⟩ is always nonzero!

Couplings to φ start with U(1)A inv.: V⇣� =  ⇣ �⇤ · �+ . . .

The tetraquark ζr is just a massive field with a v.e.v. : boring!



Tetraquarks for three flavors

Three flavors: 3 x 3 = 3 + 6 .  
Diquark field flavor anti-triplet, 3 �aA

L = ✏abc ✏ABC (qbBL )T C�1 qcCL

LR tetraquark field ζ transforms identically to 
Φ under Gχ = SU(3)L x SU(3)R 

Under U(1)A, Φ has charge +1, ζ charge -2.

⇣ab = (�aA
R )⇤ �bA

L

Since ζ & Φ in same representation of Gχ, 
direct mixing term.  Z(3)A invariant:
Black, Fariborz, Schechter ph/9808415 + ….; 
’t Hooft, Isidori, Maiani, Polosa 0801.2288 + ….

VA
⇣�,2 = em2 tr

�
⇣†�+ �†⇣

�

An extra dozen couplings.  
e.g., U(1)A inv. cubic term: V1

⇣�,3 = 1 ✏abc ✏a
0b0c0

⇣
⇣aa

0
�bb0 �cc0 + c.c.

⌘



“Mirror” model, T = 0

V� = m2 tr
�
�†�

�
�  (det�+ c.c.) + � tr

�
�+�

�2

V⇣ = m2 tr
�
⇣†⇣

�
�  (det ⇣ + c.c.) + � tr

�
⇣+⇣

�2

Spectrum : � = ⇡,K, ⌘, ⌘0; a0,,�8,�0 ; ⇣ = e⇡, eK, e⌘, e⌘0;ea0, e, e�8, e�0.

General model has 20 couplings:

            Fariborz, Jora, & Schechter: ph/0506170; 0707.0843; 0801.2552.  Pelaez, 1510.00653

Instead study “mirror” model, where Φ and ζ start with identical couplings

Assume only ζΦ coupling is mass term: VA
⇣�,2 = em2 tr

�
⇣†�+ �†⇣

�

Simple, because mass only mixes: ⇡ $ e⇡ , K $ eK . . .



Spectrum of the mirror model

In the chiral limit, the mass eigenstates: (need to assume                )

a0,ea0 = m2 + �+ 6��2 ± em2 ; �0, e� = m2 � 2�+ 6��2 ± em2

⇡, e⇡ = 0 , �2 em2 ; ⌘0, e⌘ 0 = 3� , 3�� 2 em2

All states are mixtures of Φ and ζ.  Of course 8 Goldstone bosons.
Satisfy generalized ’t Hooft relation

m2
⌘0 +m2

e⌘0 �m2
⇡ �m2

e⇡ = m2
a0

+m2
ea0

�m2
� �m2

e�

Since every multiplet is doubled, this can easily be satisfied (unlike if just one). 

Even with same couplings, all masses are split by the mixing term.

At nonzero T, the thermal masses of the Φ and ζ cannot be equal!

em2 < 0



With tetraquarks, maybe two chiral transitions

m2
�(T ) = 3T 2 +m2

m2
⇣(T ) = 5T 2 +m2

em2 = �(100)2

em2 = �(120)2

Tg� T�
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⇣

�

T→
Te� " " T�

In chiral limit, may have have two chiral                  
                               phase transitions.  =>
At first, both jump, remain nonzero.
At second, both jump to zero.

<= Also possible to have single chiral
phase transition, tetraquark crossover

←⟨φ⟩
⟨ζ⟩→

←⟨φ⟩
⟨ζ⟩→



”Columbia” phase diagram for light quarks

ms

mu,d

I
II

C = crossover

I = one
chiral transition

II = two chiral transitions

Lattice: chiral transition crossover in QCD
If two chiral phase transitions for three massless flavors, persists for nonzero mass
Implies new phase diagram in the plane of mu = md versus ms:

X = QCD, crossover                    

←critical line

critical line→

critical line→

tricritical point→



Tetraquarks in the plane of T and μ

Diquark fields are identical to the order parameters for color superconductivity.
Tetraquark condensate  = gauge invariant square of CS condensate.  Suggests:

T

µB

χ

χ~

↓chiral crossover line

↑tetraquark
  crossover

↓ color superconducting line

Line for chiral crossover might end, meet line for first order chiral transition at
Critical EndPoint (CEP).  Massless σ at CEP.   Rajagopal, Shuryak & Stephanov, ’99
             
In effective models, to find the CEP, must include tetraquarks: need the right σ!

❋ = Critical EndPoint? 

←1st order chiral line



Using the lattice to fix the σ model?
Briceno, Dudek, Edwards, & Wilson (Hadron Spectrum Coll.), 1607.05900
First study of the σ meson on the lattice with light, dynamical quarks
mπ = 391 MeV: σ bound state resonance just below ππ threshold
mπ = 236 MeV: σ broad resonance, well above ππ threshold

Perhaps: fix the parameters of σ model plus tetraquarks from the lattice
Very difficult, but of direct relevance for the CEP.

-300

-200

-100

 0
 300  500  700  900half

width↑



Four flavors, three colors: hexaquarks

Diquark 2-index antisymmetric 
tensor: �(ab)A

L = ✏abcd ✏ABC (qcBL )T C�1 qdCL

So LR tetraquark is same: ⇣(ab),(cd) =
⇣
�(ab)A
R

⌘†
�(cd)A
L

Tetraquark couples to usual Φ through cubic, quadratic terms, so what.

Instead, consider triquark field:

Triquark is a color singlet, fundamental rep. in flavor.  
Hence a LR hexaquark field is just like the usual Φ,
and mixes directly with it.

⇠ab = (�a
R)

† �b
L

�a
L = ✏abcd ✏ABC qbAL (qcBL )T C�1 qdCL

Analysis for general numbers of flavors and colors is not trivial.  
Like color superconductivity.


